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Time-accurate high-fidelity Computational Fluid Dynamics (CFD) simulations of the
launch environment are an important part of the successful launch of new and existing space
vehicles. The capability to accurately predict certain aspects of the launch environment,
such as ignition overpressure (IOP) waves and launch acoustics, is paramount to mission
success. Implicit dual-time stepping methods represent one approach to provide accurate
computational results in a timely manner. Two simplified test cases related to the launch
environment are examined. The first test case models the IOP waves generated from a 2D
planar jet located above a 45-degree flat plate, while the second case investigates launch
acoustic noise generated from the jet of a rocket impinging on an axisymmetric flame trench
and mobile launcher. Sensitivity analysis has been performed and a verification procedure
was applied to investigate the necessary spatial and temporal resolution requirements for
CFD simulations of the launch environment using an implicit dual-time method.

Nomenclature

∆t Time-step size (s) ∆x Spatial-step size (m)
ε Sub-iteration convergence criteria Tref Reference temperature (K)
Uref Reference velocity (m/s) Pref Reference pressure (Pa)
Cp Specific heat at constant pressure (J/kg/K) γ Ratio of specific heats
HLV Heavy Lift Vehicle ML Mobile Launcher
IOP Ignition Overpressure DOP Duct Overpressure
CFD Computational Fluid Dynamics CAA Computational Aeroacoustic Analysis
RMS Root-Mean-Squared SRB Solid Rocket Booster

I. Introduction

The National Aeronautics and Space Administration (NASA) is currently exploring new options for future
space vehicles, including Heavy Lift Vehicles (HLV) to carry large payloads to low-earth-orbit and beyond.
The HLVs will require much higher thrust than current launch vehicles. Using larger, more powerful solid
rocket boosters (SRBs) is one option being considered to provide the additional thrust. The feasibility of
launching HLVs from the existing facility at Kennedy Space Center (KSC) must be considered. Due to the
increased thrust, several problems must be addressed. Two such problems are the assessment of the water
suppression system to reduce the Ignition Overpressure (IOP) waves and characterization of the launch
acoustic environment.

Upon ignition of the solid rocket propulsion system, large-magnitude IOP waves are generated during
the buildup of thrust, in which mass is suddenly injected from the nozzle through the exhaust holes of the
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mobile launcher into the confined volume of the flame trench. The additional mass displaces the air in the
trench, causing a piston-like action in which compression and expansion waves travel between the mobile
launcher and the flame trench. The reflected IOP waves can travel back towards the launch vehicle and
potentially affect structural integrity. The IOP waves can also affect the stability of the vehicle during the
first second of launch, and could generate a dangerous debris field. In order to reduce the magnitude of the
IOP waves, a water suppression system has been established, in which jets of water are injected into the
exhaust plume. Predicting the magnitude and direction of the IOP waves generated by HLVs is critical to
assess the effectiveness of the water suppression system.

Once the IOP waves have subsided and the vehicle is ascending, launch acoustics become critical. Launch
acoustics are characterized by small amplitude pressure waves with broadband sound pressure levels. During
launch, acoustic noise is generated by the turbulent exhaust jet mixing with the ambient air and impinging
on the flame trench. The transient acoustic waves cause structural vibrations which can adversely affect
the payload and electronics of the vehicle, as well as tower operations. Accurate prediction of the noise
generation mechanisms and sound propagation can be used to ensure payload safety.

High-fidelity time-accurate Computational Fluid Dynamics (CFD) simulations have been established as
a central component in the safety assessment of launch vehicles both during takeoff and throughout the
mission.1–3 The ability to predict specific phenomenon such as IOP waves and launch acoustics is critical
to the successful launch of a vehicle. One method to provide accurate results for unsteady fluid dynamic
problems, using a reasonable amount of computational resources, is the dual-time stepping method. The
dual-time stepping method is an implicit numerical method for unsteady flows in which a pseudo-time process
is embedded into each physical time-step and the discrete nonlinear system is marched to a pseudo-steady
state.4 Originally developed to extend the artificial compressibility method to unsteady incompressible flows,
the dual-time procedure allows efficient steady-state convergence algorithms to be applied at each physical
time-step. Another important advantage of dual-time stepping methods is numerical stability, allowing the
user to choose the time-step based on the relevant physics of the problem.

While time-accurate CFD simulations offer a powerful prediction tool for modeling unsteady flows, it is
often difficult to determine the required spatial and temporal resolution requirements as well as quantifying
the error in the computed results. For example, it has been shown that using excessively large time-steps
combined with incomplete convergence of the sub-iteration procedure may generate spurious solutions that
appear physically reasonable but contain large amplitude and phase errors.5 Currently, no well-established
theory exists on necessary conditions (i.e. number of sub-iterations, residual convergence, etc.) to maintain
a specified space-time accuracy. One could simply perform sub-iterations until machine convergence is
achieved for each time-step, but this is not computationally economical for the accuracy requirements of
most engineering applications. Often, a grid, time-step, and number of sub-iterations is chosen based on
intuition or expert knowledge about the problem. Although this approach may be perfectly adequate it lacks
rigorous mathematical justification. A verification procedure of the dual-time stepping method is described
to determine the requirements for modeling launch environment flows. Time-step convergence of application
specific functionals on a fixed mesh is demonstrated. Space-time convergence of these functionals is shown
to be more difficult to achieve.

I.A. Objectives and Approach

The objectives of this work are to determine the spatial and temporal resolution requirements to accurately
model the launch environment, and develop a procedure to assess the accuracy of the unsteady simulations
when experimental and flight data do not exist. Specifically, the simulation of IOP waves during ignition and
the noise generation and sound propagation associated with launch acoustics. Results of this study will be
used as a guideline in selecting an appropriate grid resolution and time-step for future launch applications.

In order to fulfill the objectives, two simplified inviscid model problems are proposed to represent the
launch environment. The first is a 2D jet impinging on a flat plate at 45-degrees, which represents IOP
wave phenomenon. The second is an rocket launching from an idealized mobile launcher above a flame
trench. The entire domain is represented by a single plane axisymmetric assumption and appropriate source
terms are included in the governing equations. The rocket is located far above the launcher and longer
time integration is performed to identify the launch acoustics properties. Detailed sensitivity analysis of the
unsteady pressure signatures to both mesh size and time-step is performed. Results from the analysis are
used in a dual-time verification procedure to assess the accuracy of the simulations. Although the model
problems exclude 3D effects, they still retain much of the physical complexity of the true applications, while
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having computational requirements small enough to perform the large sensitivity analysis and verification
study.

I.B. Dual-time Verification Procedure

The dual-time verification procedure consists of a two-step process. Before the procedure is described, two
convergence criteria are defined:

• Time-step Convergence, defined by fixing the spatial mesh and sub-iteration convergence criteria,
and determining the time-step required for the solution to converge with respect to a predefined
measure.

• Space-Time Convergence, defined by fixing the sub-iteration convergence criteria, and determining
the spatial and temporal resolution required for the solution to converge with respect to a predefined
measure. In this case mesh spacing and time-step are linked such that ∆x ∝ ∆t.

In the definitions above, the term ”converge with respect to a predefined measure”, means that the change of
some measure of the solution becomes smaller than a user defined tolerance. For example, the measure could
be the time integral of pressure at a specific point, or the L2-norm of the difference between two solutions.
Definitions of the measure and the convergence tolerance are problem dependent, and should be chosen to
assess the simulation’s accuracy for each particular application.

The first step of the verification procedure consists of determining time-step convergence for a fixed mesh.
Starting on a coarse mesh, the unsteady solution is computed using a sequence of monotonically decreasing
time-steps. Once the solution has converged with respect to the predefined measure (i.e. the functional stops
changing with decreasing time-step), time-step convergence has been achieved. Unsteady solutions are then
computed on a finer mesh with a subset of the monotonic sequence of time-steps used on the previous mesh.
This procedure continues until time-step convergence is achieved on each relevant mesh, at which point the
largest time-step to maintain a prescribed temporal accuracy level for each fixed mesh resolution is obtained.

The second step of the verification procedure builds on the results of the first step. Examining the
results of the time-step convergence analysis for each level, a particular combination of time-step and spatial
resolution are chosen. Holding the ratio of ∆t/∆x fixed, the functional is plotted for a sequence of meshes
with monotonically increasing resolution. Once the functional stops changing with increasing resolution
(within a user-prescribed tolerance), space-time convergence has been achieved. Note if the space-time
convergence criteria is not satisfied, the analysis can still be used to provide a reasonable error estimate of
the solution.

II. Computational Methodology

A 2D/3D CFD code, LAVA (Launch Ascent and Vehicle Aerodynamics), using the dual-time stepping
method is applied. The numerical method has options for both overset and immersed boundary spatial
discretizations with block-structured adaptive mesh refinement. Details of the governing equations and
discretization are omitted, see References6–8 for the overset formulation. Second-order backward differencing
is used in time and a preconditioned formulation of the Roe numerical flux for the convective terms. Higher-
order accuracy in space is obtained using standard MUSCL extrapolation of the primitive variables with the
minmod limiter to control numerical oscillations at shocks. A domain decomposition approach is used for
parallel computation, implemented using the MPI standard for parallel communication.

In the overset grid methodology, as described in Reference,9 the solution domain is decomposed into
overlapping patches (or zones) of body-fitted curvilinear grids. The overlapping grids must be assembled
such that points which reside inside the solid bodies are removed from the domain (blanked) and points that
require boundary information are identified and filled with interpolation. Figure 3 shows an example of the
overset grid assembly process. The governing equations are transformed to curvilinear coordinates in strong
conservation law form.10 Next, the transformed equations are discretized on each individual zone where
the boundary of the zone is updated through either physical boundary conditions or overset interpolation
from an overlapping donor zone. Second-order accurate interpolation is used on overlapping boundaries to
maintain the overall accuracy of the method. The linear system of equations, which must be solved at each
sub-iteration, is relaxed using an alternating line-implicit Jacobi procedure.

3 of 18

American Institute of Aeronautics and Astronautics



In the immersed boundary methodology, complex 3D geometries are discretized using a sharp interface
immersed boundary method (IB), similar to Reference11 In this method, boundary conditions are imposed
on the Cartesian grid by extending the solution into the body. This results in a method that is accurate
and free of small-cell stability problems. For the bulk of the flow, which is O(N) control volumes, we
compute on a regular Cartesian grid composed of rectangular parallelepiped (or cuboid) cells. We use the
immersed description for the O(N

D−1
D ) cells that intersect the boundary, where D is the dimension. The

launch environment contains a wide range of both spatial and temporal scales. In order to simulate this
range of spatial scales, a multi-resolution numerical method is required. Adaptive mesh refinement (AMR)
is a proven methodology for multi-scale problems with an extensive existing mathematical and software
knowledge base. The LAVA code has been extended using the high-performance Chombo AMR library12

to provide a multi-resolution capability that can coarsen and refine as a simulation progresses. An example
showing the 3D IB-AMR capabilities of LAVA for a complex launch environment is shown in Figure 1 and
2. These figures illustrate IOP waves generated from Solid Rocket Boosters (SRBs) during the launch of
a HLV. The 3D simulations are computationally expensive, therefore space-time accuracy assessment are
performed on 2D representative problems to determine resolution requirements.

III. Results and Analysis

III.A. Ignition Overpressure Problem

The IOP model problem was jointly defined by NASA and the Japan Aerospace Exploration Agency (JAXA)
through a collaborative agreement. The geometry for the IOP wave propagation problem consists of a 2D
rocket nozzle located above a 45-degree flat plate, as shown in Figure 4(a). The nozzle exit diameter is 0.1
meters and is located 0.5 meters above the plate. Unsteady stagnation conditions are prescribed at the nozzle
plenum, where the dimensionless stagnation pressure is shown in Figure 4(b) and the stagnation temperature
is held fixed at the reference temperature Tref = 300 K (cold jet). The remaining reference conditions are:
pressure Pref = 100 kPa, velocity Uref = 0 m/s, specific heat at constant pressure Cp = 1005 J/kg/K, and
the ratio of specific heats γ = 1.4. Slip-wall boundary conditions are used on the nozzle walls and on the
plate for inviscid simulations. The far-field grid is extended away from the region of interest so that the
IOP wave never leaves the solution domain within the time integration limits. Fourteen point locations were
selected in the domain of interest, as shown in Figure 4(a), and the time history of pressure at each of these
locations is recorded. Since the purpose of simulating IOP wave phenomenon is to assess the peak pressure
values (both suction and load), the application dependent functional chosen for the dual time verification
procedure is the magnitude of the gauge pressure at each selected point location. For each sample point,
this functional is mathematically defined as

F (p) = max
0≤t≤T

|p(t)− Pref |. (1)

Similar results were obtained at each of the selected point locations, so only the results at point location 6
are reported.

Three mesh resolutions were generated for the present analysis. Figures 5(a)–(d) show the entire domain,
a diagram of the overlapping grid system, and two different views of the coarse resolution overset grid. The
finest off-body mesh spacing h for each mesh resolution is chosen to match the outer boundary spacing of
the near-body grids; h = ∆x = 0.005m (Coarse), h = ∆x/2 (Medium), and h = ∆x/4 (Fine). Table 1
displays the number of zones, number of points, and number of CPU cores used for the simulations. A
total of 10 cases were run on the coarse grid with physical time-steps corresponding to CFL = 0.5, 1,
2, 4, ... , 256, and 16 orders of magnitude reduction in the residual at each time-step was required for
0 < t < 100 · Dexit/Cref = 0.028796 seconds. A total of five physical time CFLs were chosen from this set
and used to perform simulations on the medium and fine grids, in which 16 orders of magnitude reduction
in the residual at each time-step was again required. By removing the solution dependence on sub-iteration
convergence criteria, the largest physical time-step which remains accurate to engineering tolerances was
chosen for each grid level. In order to reduce computational costs further, the medium mesh with CFL = 4
was chosen to perform a sensitivity analysis with respect to convergence criteria. An additional four cases are
run with convergence tolerances of 1, 2, 4, and 8 orders of magnitude residual reduction. This resulted in 24
total unsteady cases which required approximately 2 days to complete on NASA Advanced Supercomputing
(NAS) Division’s Pleiades supercomputer.
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Resolution Zones Points Cores
Coarse 24 165k 8
Medium 66 552k 24

Fine 209 1,945k 120
Table 1. Grid statistics and processor usage for the IOP test case.

A constant physical time-step is used throughout the simulations which was set with a prescribed CFL
number by

∆t =
CFL h

λmax
. (2)

In Equation 2 the velocity speed λmax ≈ 788 m/s which is an approximation of the maximum wave speed
determined from steady Quasi-1D nozzle theory. This should not be confused with the typical time-step
definition used in explicit algorithms where h is the smallest spacing in the grid and λmax is the maximum
wave speed in the entire domain at the current time. The explicit time-step definition leads to orders of
magnitude smaller time-steps and changes the time-step throughout the simulation. This would require a
modified implementation of the second-order backward difference scheme.

In Figure 6 an unsteady time-sequence of the gauge pressure (psig) is shown to illustrate the physics of
IOP wave initiation and propagation. Initially, high pressures are generated as the thrust builds up. Next,
low pressure is created aft of the nozzle throat caused by choking and strong vortex waves are observed in
the shear layer of the jet. Once the jet impinges on the plate, strong waves are reflected. As time increases
diamond structures form in the jet and acoustic wave structures are observed throughout the domain of
interest. Assessing the accuracy of the unsteady simulations is described in the next two sub-sections, and
computational efficiency is addressed in the final sub-section.

III.A.1. Time-Step Sensitivity Analysis

Unsteady simulations were first computed on the coarse mesh for 10 distinct time-steps ranging from 8.0e-4−
1.6e-6 seconds. A time history of the dimensionless gauge pressure at point location 6 for each of the CFL
conditions is plotted on Figure 7(a). The largest time steps associated with CFL = 128 and 256 are
noticeably diffused, but it is hard to distinguish differences between the pressure signatures generated using
the smaller time-steps. In order to quantitatively assess the sensitivity of the solution to time-step the
functional defined in Equation 1 is plotted versus time-step at point location 6 along with the estimated
temporal error in Figures 7(b) and (c). The estimated error is computed as the difference between the
functional predicted using an intermediate time-step with the functional predicted using the finest time
step. Examining the plots it is observed that the functional value is time-step converged for CFL ≤ 8.
This suggest that using a CFL = 8 is sufficient for simulating IOP wave physics on the coarse mesh. It
does not indicate whether the coarse mesh itself is sufficiently accurate. Continuing with the verification
procedure, unsteady simulations were performed on the medium resolution mesh for CFL = 0.5, 1, 2, 4, and8.
Focusing on location 6, Figure 7(d) plots the time-history of dimensionless gauge pressure. These pressure
signatures are indistinguishable from one another, which is confirmed by the functional convergence history
and error estimate plotted in Figures 7(e) and (f). This suggests the CFL = 8 remains sufficient, but we
remark that the actual time-step has been reduced by a factor of 2 between the coarse and medium mesh
resolutions. Finally, the unsteady simulations are performed on the fine mesh using the aforementioned
CFL numbers. In this case, differences are observed in the time-history at location 6 when using CFL = 8
between 0.014 ≤ t ≤ 0.015(s), where a larger positive gauge pressure is observed at two different peaks in
Figure 7(g). Examining the functional convergence are error estimate plots in Figures 7 (h) and (i), an error
of approximately 1.55% is estimated for the CFL = 8 simulation. This estimate should not be mistaken
for an actual error between the numeric functional and the functional evaluated with the exact solution of
the governing equations. The estimate is simply the sensitivity of the functional to the time-step on a fixed
mesh. A more rigorous error estimate was performed in the next sub-section. From the time-step sensitivity
analysis a CFL = 4 appears both accurate, economical, and conservative for the mesh resolutions included
in the study.
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III.A.2. Space-Time Sensitivity Analysis

The second step of the dual time verification procedure is to analyze the sensitivity to space-time resolution.
From the results of the time-step sensitivity analysis the unsteady solution computed on each mesh level
with a time-step associated with CFL = 4 are used to perform the space-time sensitivity analysis. Figure
8(a) plots the time history of dimensionless gauge pressure at location 6 for each mesh level. It is observed
that higher frequency wave content is captured as the spatial and temporal resolution increases. Second,
the suction pressure appears to have two peaks that are very close in magnitude. The first peak appears
smooth and well-resolved on each mesh, while the second peak appears after the onset of small scale acoustic
effects. This might have affected the space-time functional convergence if finer grids are included in the
study. The space-time functional convergence is analyzed in Figures 8(b) and (c) which plots the functional
value versus mesh size h along with a log-log plot of the difference between the functional predicted on the
coarse and medium meshes with the fine mesh. The difficulty in achieving true space-time convergence is
evident, the functional values are clearly increasing with finer mesh resolution. With that said, the percent
error between the functional values predicted on the fine and medium meshes is below 5% (the black dashed
horizontal line) which is a reasonable engineering tolerance for such complicated physical phenomenon. It is
also observed that the error is reducing at almost second-order (blue dashed line is second order slope while
red dashed line is first-order). This is promising considering the highly nonlinear nature of the flow which
includes many shock waves and contact discontinuities. Overall the medium mesh resolution with CFL = 4
appears to be an adequate choice for simulating IOP waves.

III.A.3. Convergence Tolerance Analysis

The dual time verification procedure, consisting of time-step and space-time sensitivity analyses, has provided
quantitative evidence indicating sufficient spatial and temporal resolution requirements for modeling IOP
waves. In the previous analysis the coupled nonlinear system of equations were solved at each time-step using
a 16-order of magnitude residual reduction criteria. This is very severe, and not necessary for maintaining
the solution accuracy. In order to determine a more economical convergence criteria, while maintaining
the accuracy of the simulation, a convergence tolerance study is performed. The unsteady simulation is
computed using the medium mesh and CFL = 4 with residual reduction tolerances of 1, 2, 4, and 8 orders
of magnitude. The time history and functional sensitivity to convergence tolerance are used to assess the
accuracy of the simulations. In this study the error estimated using the functional value predicted using the
16-orders of magnitude residual reduction results previously computed. Large phase and amplitude errors
are observed in the time history plot, shown in Figure 9(a), when the nonlinear residual is only converged
one to two orders of magnitude at each time-step. Examining the functional convergence and error estimate
plots in Figure 9(b) and (c), four orders of magnitude convergence in residual appears sufficient to maintain
an engineering level accuracy.

III.B. Launch Acoustic Problem

III.B.1. Problem Setup

After determining relevant spatial and temporal resolution requirements for simulating IOP wave phe-
nomenon, a similar dual time verification procedure was applied to a model launch acoustic problem. The
launch acoustic model problem was designed to assess the capability of the dual-time stepping method in
capturing noise generation and sound propagation. The geometry of the problem consists of a fictitious
axisymmetric launch site containing a generic rocket, mobile launcher (ML), and flame trench as shown in
Figure 10(a). This domain is represented using a single-plane and axisymmetric source terms are included
in the governing system of equations. Twenty-seven point locations were selected for recording the unsteady
pressure history, which are shown in 10(b). Identical reference conditions as those described above are used
for this case. The interior of the nozzle is not modeled, and a steady supersonic nozzle exit profile is imposed
on the nozzle exit, see Reference13 for details. As in the previous case, slip-walls are used for the rocket,
mobile launcher, and flame trench. The far-field is also extended far away from the rocket and extremely
coarse meshes are used in the far-field to sufficiently dissipate the pressure waves before they reach grid
boundaries, avoiding spurious reflections.

Four mesh resolutions were generated for the launch acoustic problem, and a diagram of the overlapping
grid system is shown in the upper right corner of Figure 10(a). The finest off-body mesh spacing h for each

6 of 18

American Institute of Aeronautics and Astronautics



grid resolution (again chosen to match the outer boundary spacing of the near-body grids) and the time
steps used for the CFD runs were:

• Coarse: h = ∆x = 0.15m and eight time steps ranging from 3.20×10−4 ≤ ∆t ≤ 2.50×10−6 seconds.

• Medium: h = ∆x/2 and eight time steps ranging from 8.00× 10−5 ≤ ∆t ≤ 6.25× 10−7 seconds.

• Fine: h = ∆x/4 and seven time steps ranging from 4.00× 10−5 ≤ ∆t ≤ 6.25× 10−7 seconds.

• Ultra-Fine: h = ∆x/8 and six time steps ranging from 2.00× 10−5 ≤ ∆t ≤ 6.25× 10−7 seconds.

Dimensional time-steps are listed above, instead of the CFLs used in the previous analysis. Each case was
simulated for one second of physical time with a convergence criteria of 16 orders of magnitude reduction
in the global L2 norm of the residual at each physical time-step. This eliminated incomplete sub-iteration
convergence from the analysis, as was done for the IOP problem. Table 2 displays the number of zones,
number of points, and number of CPU cores used for the overset method.

Resolution Zones Points Cores
Coarse 59 171k 8
Medium 102 503k 24

Fine 247 1,603k 84
Ultra-Fine 674 5,484k 264

Table 2. Grid statistics and processor usage for the launch acoustic test case.

A time sequence of the gauge pressure showing the initiation and propagation of the launch acoustics
is displayed in Figure 11. For the acoustic simulations the rocket is held stationary at 60.96 m. above
the mobile launcher. Since the time scale of the launch acoustics is much smaller than the time it takes a
rocket to travel away from the launch facility, this assumption should be valid (at least over some specific
time interval). Before the acoustic behavior of the flow field is considered, the initial transient pressure
waves must pass out of the domain of interest. This initial wave is seen in the first two images of the
sequence, (t = 0.256 and 0.512 s). Once the initial transient has subsided, the jet impinging on the trench
and interacting with the mobile launcher creates a phenomenon called Duct Overpressure (DOP). The DOP
waves travel back up the hole of the mobile launcher and out of the sides between the launcher and the flame
trench, (t = 0.768 and 1.000 s). Along with the DOP waves, the jet creates lower amplitude sound waves,
known as Mach waves, which interact with the DOP waves and the launch structure. These simulations are
intended to capture the generation, reflection, and interaction of the acoustic waves, all within an idealized
axisymmetric simulation in order to assess the resolution requirements for 3D simulations.

In order to apply the dual time verification procedure and quantify the accuracy of the launch acoustic
simulations, a functional associated with sound pressure level is used. In this case, the Root-Mean-Squared
(RMS) functional of gauge pressure is chosen as the application dependant functional,

FRMS(p) =

[
1

(T2 − T1)

∫ T2

T1

(p(t)− Pref )2 dt

] 1
2

. (3)

The two time instances used in the functional are, T1 = 0 and T2 = 1.0. Although this time interval is to
short for extracting relevant sound pressure levels, acoustic effects appear to dominate the pressure signature
after 0.5 seconds.

III.B.2. Time-Step Sensitivity Analysis

The axisymmetric launch acoustic test case analysis was more computationally expensive than the IOP test
case due to the longer time integration and the additional mesh resolution. The computational cost the
ultra-fine mesh resolution and smallest time-step was approximately 10 days of continuous runtime using
264 cores. Results from this study are shown for point locations 9 and 12 which are located on the payload
section of the generic rocket and on the bottom corner (jet side) of the ML, see Figure 10. Figure 12(a)–(i)
shows the time history of dimensionless gauge pressure, the functional convergence history, and the temporal
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error estimates for the coarse, medium and fine mesh resolutions at point location 9. As the spatial resolution
increases, higher frequency wave content is captured (though under-resolved) as expected from the broadband
nature of launch acoustics. The qualitative features such as the larger IOP and DOP waves appear to be
captured, but larger variations in the small amplitude waves are observed as the mesh and time-step are
refined. Examining the functional history and temporal error estimates, time-step convergence is achieved
on the coarse and medium mesh resolutions, but not on the fine mesh resolution. The same observations are
made at point location 12 where Figure 13(a)–(i) shows the time history of dimensionless gauge pressure,
the functional convergence history, and the temporal error estimates for the coarse, medium and fine mesh
resolutions. Comparing the time and functional histories, it appears that point location 9 contains less high
frequency wave content in the pressure history and is better behaved with respect to percent error with
decreasing time-step. This makes sense since location 9 is in a region where acoustic waves are propagated
to, while location 12 is in a noise generating region of the domain. This distinction of how well the current
CFD tools predict noise generating and acoustic propagation regions will be elaborated in the next section.
Overall it appears that time-step convergence is difficult to achieve for the launch acoustic problem as the
mesh is refined.

III.B.3. Space-Time Sensitivity Analysis

Once the initial 23 unsteady simulations were completed for the coarse, medium, and fine grids and the
time-step sensitivity analysis was performed, an additional ultra-fine grid was generated and 6 unsteady
simulations were performed in order to assess the space-time sensitivity of the RMS functional for the launch
acoustic problem. From these results the fixed ratio ∆t/∆x = 1/15260 is chosen and the time history,
functional history, and space-time error estimate for point locations 9 and 12 are compared in Figures 14(a)–
(f). The time-histories plotted in Figures 14(a) and (d) show that additional high frequency information is
captured at both point locations as the resolution is increased in both space and time. Phase differences are
also evident at location 9 after 0.4 seconds. Similar to the IOP results of the space-time sensitivity analysis
the functional history at location 9 appears to be trending toward a converged value, but is not converged
in space-time. The functional history at location 12 is much worse, showing no sign of convergence in space-
time. In fact the error estimate appears to be increasing with resolution. This analysis suggests that noise
generating regions may be too energetic to converge using the present definition. It may be necessary to
redefine the functional such that only certain frequencies in time are included in the RMS functional. In
general it does not appear that the dual time stepping method with second-order (space and time) upwind
schemes are capable of achieving space-time convergence nor engineering level accuracy for launch acoustic
problems throughout the domain. These methods may be used in conjunction with linearized aeroacoustic
tools in a hybrid fashion, which is one of the paths of future work the authors are examining. Alternatively,
higher-order and/or adaptive methods may be promising.

IV. Conclusion

A dual-time stepping method has been applied to two launch environment test cases. A large parameter
study was presented examining the sensitivity of unsteady pressure history to time-step and mesh size. A dual
time verification procedure was developed to assess the accuracy of the simulations (since no experimental
or flight data exists for these cases). Time-step convergence on a fixed mesh was demonstrated for the IOP
wave problem and on the coarse and medium mesh of the launch acoustic problem. Space-time convergence
analysis was performed and the selected functionals do not appear to be converged indicating that additional
refinement (much finer than practical for 3D simulations) is required. Space-time error estimates below
5% tolerance level are achieved for the IOP problem but not the launch acoustic problem. Study of the
space-time convergence properties of the dual-time stepping method applied to launch environment flows
is ongoing. Pure CFD analysis for launch acoustic flows is expensive and under-resolved. Future efforts in
modeling launch acoustics will focus on investigating hybrid approaches using empirical information, analytic
methods, and computational aeroacoustic analysis (CAA) in conjunction with CFD results.
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a) Pressure (b) Density
Figure 1. (a) Gauge pressure showing IOP, (b) zoom in on density slices, both for a realistic launch vehicle. Simulated
with the LAVA code using the IB-AMR method.
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Figure 2. Time sequence of gauge pressure, showing IOP wave physics for a realistic launch vehicle. Simulated with
the LAVA code using the IB-AMR method.

Figure 3. Overset grid generation procedure: Step 1, define the underlying surface geometry; step 2, generate body-
fitted near-body grids and define specified regions of interest; step 3, automatically generate off-body Cartesian grids
to fill the domain, provide sufficient overlap for proper connectivity and resolve the specified regions of interest; step
4, automatically blank sections of the grid which lie inside the body and compute overset connectivity weights. The
finest off-body mesh spacing h is indicated in the lower plots.
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(a) (b)
Figure 4. (a) Diagram of the IOP test case showing the two-dimensional nozzle, the 45-degree flat plate, and the 14
selected points for pressure extraction. (b) Time history of the stagnation pressure at the plenum of the nozzle.

(a) IOP domain (b) Grid resolution diagram

(c) Region of interest (Coarse mesh) (d) Nozzle region (Coarse mesh)
Figure 5. Description of grids used for IOP problem. (a) Extents of the solution domain. (b) Diagram showing the
resolution used for specified regions. (c) Image of the coarse grid in the specified region of interest. (d) Close-up view
of the nozzle section (Coarse grid).
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t = 0.0036 (s) t = 0.0072 (s) t = 0.0108 (s)

t = 0.0144 t = 0.0180 (s) t = 0.0216 (s)
Figure 6. Time sequence of gauge pressure (psig) showing the IOP wave physics, the X- and Y-axis labels are in meters.
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Coarse Grid

a) Time History b) Functional History c) Temporal Error Estimate

Medium Grid

d) Time History e) Functional History f) Temporal Error Estimate

Fine Grid

g) Time History h) Functional History i) Temporal Error Estimate
Figure 7. Time history of dimensionless gauge pressure for the IOP test problem at point location 6 along with
functional convergence history and temporal error estimate as functions of CFL. Results for Coarse, Medium, and
Fine grid resolutions are plotted in descending order. The CFL is plotted in reverse order on the x-axis so that the
time-step is decreasing from left-to-right.
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a) Time History (b) Functional History (c) Space-Time Error Estimate
Figure 8. Space-time convergence results for the IOP wave problem at point location 6 using CFL = 4.

a) Time History (b) Functional History (c) Convergence Error Estimate
Figure 9. Convergence tolerance sensitivity results for the IOP wave problem at point location 6 using the medium
mesh and CFL = 4.
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(a) Geometry (b) Selected Points
Figure 10. (a) Image showing the geometry of the launch acoustic test case which contains an axisymmetric rocket,
mobile launcher and flame trench. A close-up of the flame trench is shown in the upper left, and a diagram showing
the resolution used for specified regions in the upper right. (b) 27 selected point locations for pressure time-series
extraction.

t = 0.256 (s) t = 0.512 (s)

t = 0.768 (s) t = 1.000 (s)
Figure 11. Time sequence of gauge pressure (psig) showing the launch acoustic initiation and propagation.
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Coarse Grid

a) Time History b) Functional History c) Temporal Error Estimate

Medium Grid

d) Time History e) Functional History f) Temporal Error Estimate

Fine Grid

g) Time History h) Functional History i) Temporal Error Estimate
Figure 12. Time history of dimensionless gauge pressure for the launch acoustic test problem at point location 9 along
with functional convergence history and temporal error estimate as functions of ∆t. Results for Coarse, Medium, and
Fine grid resolutions are plotted in descending order. The ∆t is plotted in reverse order on the x-axis so that the
time-step is decreasing from left-to-right.

16 of 18

American Institute of Aeronautics and Astronautics



Coarse Grid

a) Time History b) Functional History c) Temporal Error Estimate

Medium Grid

d) Time History e) Functional History f) Temporal Error Estimate

Fine Grid

g) Time History h) Functional History i) Temporal Error Estimate
Figure 13. Time history of dimensionless gauge pressure for the launch acoustic test problem at point location 12 along
with functional convergence history and temporal error estimate as functions of ∆t. Results for Coarse, Medium, and
Fine grid resolutions are plotted in descending order. The ∆t is plotted in reverse order on the x-axis so that the
time-step is decreasing from left-to-right.
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Point Location 9

a) Time History (b) Functional History (c) Space-Time Error Estimate

Point Location 12

d) Time History (e) Functional History (f) Space-Time Error Estimate
Figure 14. Space-time convergence results for the launch acoustic problem at point location 9 (top) and 12 (bottom)
using the fixed ratio ∆t/∆x = 1/15260.
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